were corrected for refractive index and for slight differences in absorbance. ${ }^{23}$

Determination of Relative Quantum Yields of 2 and 3. Three samples were prepared such that the concentration of $\mathbf{1}$ was $5.9 \times$ $10^{-3} \mathrm{M}$. The solvent in the first sample was pure benzene. The sample was degassed and irradiated for 12 hr at which time starting material was completely reacted. The ratio of $\mathbf{3}$ to 2 was 1:22 (by nmr). The solvent for the second sample was 2.48 M bromocyclopropane in benzene. After degassing and irradiating for $1 / 2 \mathrm{hr}$, no starting material remained, and the only detectable product was 2. A sample with benzene as solvent was saturated with oxygen and irradiated for 22 hr . In this case, the only detectable compound was starting material 1 ,

Determination of Quantum Yields for Disappearance of 1. The ferrioxalate method was used ${ }^{24}$ for actinometry, and the concentration of 1 was measured spectrophotometrically at 345 nm . The concentration of $\mathbf{1}$ in all runs was sufficient to absorb 99% of the incidental light.

Acknowledgment. This work was supported by the U.S. Army Research Office, Durham, N. C., whom we thank.

References and Notes

(1) Part LXXX: B. Wagner and G. S. Hammond, J. Organometal. Chem., submitted for publication.
(2) G. Ciamician and P. Silber, Ber., 35, 4128 (1902).
(3) H. Stobbe, Ber., 45,3396 (1912).
(4) J. Meinwald and J. W. Young. J. Amer. Chem. Soc., 93, 725 (1971); J. Meinwald and J. A. Kapecki, ibid., 94, 6235 (1972); J. Meinwald, J. W. Young, E. J. Walsh, and A. Courtin, Pure Appl. Chem., 24, 509 (1970).
(5) F. A. Carroll and F. H. Quina, J. Amer. Chem. Soc., 94, 6246 (1972); see also T. Medinger and F. Wilkinson, Trans. Faraday Soc., 61, 620
(1965); A. R. Horrocks, A. Kearvell, K. Tickle, and F. Wilkinson, ibid., 62, 3393 (1966).
(6) For a discussion of approaches to the determination of triplet quantum yields, see J. B. Birks, "Photophysics of Aromatic Molecules," Wiley-Interscience, New York, N.Y., 1970, pp 195-200.
(7) W. A. Pryor, "Free Radicals," McGraw-Hill, New York, N.Y., 1966, pp 99-100.
(8) F. G. Moses, R. S. H. Liu, and B. M. Monroe. Mol. Photochem., 1, 245 (1969).
(9) I. B. Berlman, "Handbook of Fluorescence Spectra of Aromatic Molecules." Academic Press, New York, N. Y., 1971, p 330.
(10) Reference 9, pp 348, 349, and 351. For a discussion, see pp 72-74.
(11) A. R. Horrocks and F. Wilkinson, Proc. Roy. Soc.. Ser. A, 306, 257 (1968).
(12) See ref $6, p p 286-287$ for a compilation of $k_{\text {isc }}$ data.
(13) Unpublished results of W. A. Yee and E. M. Evleth, University of California, Santa Cruz.
(14) Horrocks and Wilkinson ${ }^{11}$ have suggested a similar argument to rationalize faster intersystem crossing from L_{a} states than from L_{b} states.
(15) J. Saltiel and L. Metts, unpublished results.
(16) R. H. Mitchell and F. Sondheimer, Tetrahedron, 24, 1397 (1968).
(17) J. K. Stille and R. T. Foster, J. Org. Chem., 28, 2703 (1963).
(18) W. Ried and H. Bodem, Chem. Ber., 91, 1981 (1958).
(19) R. Stephan, Chem. Ber., 90, 296 (1957).
(20) Y. Lepage, Bull. Soc. Chim. Fr., 2019 (1963).
(21) See J. N. Demas and G. A. Crosby, J. Phys. Chem., 75, 991 (1971), for a review of emission quantum yield measurements.
(22) Reference 9, p 348; see also ref 6, pp 103-106, and I. B. Berlman, Chem. Phys. Lett., 22, 342 (1973).
(23) The emission and excitation slit widths were both 4 nm (narrow band pass conditions), and the absorption spectra of all three compounds were broad and structureless. Thus the measured absorbance was a good indication of the amount of light absorbed in the fluorescence experiment. Since all three compounds had nearly identical emission spectra, a corrected spectrometer was not necessary. The above procedure gave results in satisfactory agreement with literature values for the fluorescence quantum yield of 1,4-bis(dimethylamino)benzene.
(24) C. G. Hatchard and C. A. Parker, Proc. Roy. Soc., Ser. A, 235, 518 (1956).

Photochemical Heavy-Atom Effect. V. Reaction of Acenaphthylene with cis- and trans-1,3-Pentadiene

W, I. Ferree, Jr., ${ }^{1}$ Benjamin F. Plummer,* and W, W, Schloman, Jr. ${ }^{1}$
Contribution from the Chemistry Department. Trinity University. San Antonio. Texas 78284. Received February 26, 1974

Abstract

The heavy-atom solvent dibromomethane facilitates the cross cycloaddition of acenaphthylene (1) to cis-1,3-pentadiene (3) in a regioselective and stereoselective manner to produce syn-6-(cis-1-propenyl) [1', 8^{\prime}) naphthobicyclo[3.2.0] hept-2-ene ($\mathbf{5 d}$) and the corresponding anti-cis isomer $\mathbf{5 b}$ as 90% of the product mixture. Similarly, $\mathbf{1}$ adds to trans-1,3-pentadiene (4) to produce in over 90% of the total product mixture anti-6-(trans-1-propenyl) [1'.8']naphthobicyclo[3.2.0] hept-2-ene (5a) and the corresponding syn-trans isomer ($\mathbf{5 c}$). The reaction of $\mathbf{1}$ with $\mathbf{3}$ or $\mathbf{4}$ is sensitized by the dye Rose Bengal to give product ratios similar to those found in the direct irradiation studies. The reaction of $\mathbf{1}$ with $\mathbf{3}$ or $\mathbf{4}$ is quenched efficiently by saturated oxygen solutions. These results verify the excited triplet state of 1 as the reactive species. Kinetic parameters are derived from a concentration study of the reaction of 1 with $\mathbf{3}$. The stereochemical and kinctic evidence is interpreted as supporting the intervention of a triplet diradical intermediate in the cycloaddition reactions.

The genesis of cross cycloaddition reactions to acenaphthylene (1) evolved from the discovery by Cowan and Drisk^{2} that the photodimerization of $\mathbf{1}$ was beneficially perturbed when heavy atom solvents were present. We undertook an extensive study of the heavy atom effect (HAE) and reported that $\mathbf{1}$ undergoes photochemical cycloaddition to a variety of substrates in the presence of heavy atom solvents. ${ }^{3}$ Other investigators have also reported similar results. ${ }^{4}$

An interesting result emerged from the study of the photoaddition of $\mathbf{1}$ to cyclopentadiene (2). ${ }^{3 a}$ The excited triplet state of $\mathbf{1}$ adds to $\mathbf{2}$ in an inefficient manner that suggests the presence of an energy-wasting step in the reaction mechanism. Some reversibly formed species appears to be involved. It may be a triplet exciplex between $\mathbf{1}$ and $\mathbf{2}$ or an
intermediate diradical.
We have investigated with the use of the HAE the photoaddition of $\mathbf{1}$ to cis- 1,3-pentadiene (3) and trans- 1,3-pentadiene (4) to see if additional data might cast light on the adumbrative exciplex. The results of this investigation form the basis for this report.

Results

Structure of Products. Chart I illustrates the product structures that have been identified as arising from a photochemical reaction between $\mathbf{1}$ and $\mathbf{3}$ or $\mathbf{1}$ and 4 . The reaction is regioselective and the major products are 5a-d. The minor products are varying amounts of $\mathbf{6 a - d}$ and $\mathbf{7 a}, \mathbf{b}$, depending upon the starting alkadiene used. The four major

Chart I

products were independently subjected to ozonolysis and yielded either syn- or anti- $\left[1^{\prime}, 8^{\prime}\right]$ naphthobicyclo[3.-2.0]hept-2-ene-6-carboxaldehyde (Chart II). The stereoChart II

chemistry of the anti aldehyde 8a was determined by nmr analysis. The aldehydic proton of $\mathbf{8 a}$ resonates at $\delta 9.97$, whereas the aldehydic proton of syn aldehyde $\mathbf{8 b}$ resonates at $\delta 9.33$. This shielding difference is attributable to the positioning of the aldehydic proton of $\mathbf{8 b}$ in the diamagnetic anisotropic shielding region of the naphthalene ring. ${ }^{5 \mathrm{a}}$ This effect is typically found in the cycloadducts of acenaphthylene. 3 .5b.c

The coupling constant of the aldehydic proton of $\mathbf{8 a}$ with its α hydrogen is 0.8 Hz , while $\operatorname{syn} \mathbf{- 8 b}$ has a J value of 2.4 Hz between the aldehydic and α hydrogen. This suggests that different rotational constraints are imposed upon the carboxaldehyde function and that the effective coupling angle in the anti isomer is much smaller than in the syn isomer. ${ }^{6}$ We assume that the three hydrogens on the anti face of $8 \mathbf{a}$ prohibit the rotation of the aldehyde group into a favored angle for maximum coupling.

The ozonolysis products from compounds 5a-d were compared with the aldehydes $\mathbf{8 a}$ and $\mathbf{8 b}$ by standard glc techniques to ascertain the syn or anti relationship of the allyl substituent at the 6 position.
The cis or trans geometry of the allyl group was assigned on the basis of infrared and nmr data. Thus, both cis isomers 5b and 5d lacked the band at about $960 \mathrm{~cm}^{-1}$ that is characteristic of a trans disubstituted double bond. ${ }^{7}$ The trans isomers 5a and 5c both exhibited strong bands at about $960 \mathrm{~cm}^{-1}$

Decoupling of the methyl nmr doublet confirmed that it is coupled to the olefinic region in each isomer and allowed the coupling constants J_{FG} to be obtained for the isomers 5 . These experiments show that J_{FG} is $10.4 \pm 0.3 \mathrm{~Hz}$ in isomers $\mathbf{5 b}$ and 5 d . In isomer 5 a the value of J_{FG} is 14.8 ± 0.3 Hz . The nearly coincident chemical shifts of the olefinic hydrogens in isomer 5 c made the precision of measurement of J_{FG} difficult. However, a value of J of about $14 \pm 1 \mathrm{~Hz}$ was measurable. The fact that J_{FG} is larger for isomers $\mathbf{5 a}$ and $\mathbf{5 c}$ than isomers $\mathbf{5 b}$ and $\mathbf{5 d}$ is further verification of the relative cis or trans geometry of the allyl group, because it is generally accepted that $J_{\text {rans }}>J_{\text {cis }}$ for olefinic isomers. ${ }^{8}$

Double irradiation of the vinyl region in the isomers 5 also decouples a signal assigned to proton H_{C} in the spectrum of each isomer (Table I). To protons H_{A} and H_{B} are assigned resonances in the $\delta 4$ region. By elimination, H_{D} and H_{E} are assigned, the more shielded of the two is pre-

Table I. Nmr Chemical Shift Assignments for Isomers 5a-d ($\delta)^{a}$

Compd	$\mathrm{H}_{\mathrm{A}}, \mathrm{H}_{13}$	H_{C}	H_{D}	H_{F}	H_{F}	H_{G}	CH_{3}
$\mathbf{5 a}$	$3.8-4.2$	2.7	$2.0-2.6$	$2.0-2.6$	5.80	5.37	1.70
$\mathbf{5 b}$	$3.8-4.3$	3.1	2.4	2.4	5.77	5.42	1.55
$\mathbf{5 c}$	$3.6-4.5$	3.52	2.82	1.73	5.20	5.20	1.50
$\mathbf{5 d}$	$3.6-4.5$	3.82	2.93	1.7	4.90	5.18	1.65

${ }^{\circ}$ Shifts relative to internal TMS in 5-10\% solute concentrations in CCl_{1}
sumed to be H_{E}. As the data indicate, the diamagnetic anisotropic shielding of the aromatic nucleus causes H_{C} to appear upfield, in $\mathbf{5 a}$ and $\mathbf{5 b}$ relative to the syn isomers 5 c and 5d. Similarly, the olefinic hydrogens H_{F} and H_{G} are shifted upfield in syn isomers $\mathbf{5 c}$ and $\mathbf{5 d}$ relative to the olefinic protons in the anti isomers $\mathbf{5 a}$ and $\mathbf{5 b}$. The methyl group chemical shift is variable. Apparently the distance between the methyl group and the aromatic nucleus is large enough to minimize anisotropic shielding effects that are found with other protons in the same molecule. Because of the complexity of the multispin set, we have reported only a few coupling constants for these molecules. ${ }^{9}$

The minor products have not been investigated in detail, although the data that we have obtained at this time are in complete agreement with the structures assigned in Chart I.

Photochemical Data. In Table II a comparison is made of the major product distribution that results in direct and sen-

Table II. Major Product Distribution from Direct and Sensitized Reaction of Acenaphthylene with cis- or trals-1.3-Pentadiene

Diene	-_-Major product formed (\%) ${ }^{\text {a }}$	
	Unsensitized	Sensitized
3	5b (49); 5d (42)	5b (50): 5d (43)
4	5a (50.5); 5c (41.0)	5a (51): 5c (42)

${ }^{a}$ Percentage reported relative to total products detected.
sitized irradiations. The dicyclohexyl-18-crown-6-ether complex of the disodium salt of Rose Bengal was used in a manner identical with that in our previous study ${ }^{3 a}$ to sensitize the triplet state reactions of 1 with 3 and 4 at a wavelength of 589 nm . The direct irradiations were carried out with light of wavelengths longer than 360 nm in the heavyatom solvent dibromomethane. The product distributions are about the same.

Oxygen quenching of the reaction was verified by saturating photolysis mixtures with pure oxygen gas. Greater than 95% of the reaction was quenched when compared with quantum yields obtained in nitrogen degassed samples. This result is in contrast to observations made with cyclopentadiene. ${ }^{3 a}$

The reaction of $\mathbf{1}$ with cis-piperylene was studied as a function of the concentration of the diene in the solvents $\mathrm{CH}_{2} \mathrm{Br}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$. It was found that the data conformed to a linear relation between the reciprocal of the quantum yield and the reciprocal of the diene concentration (Figures 1 and 2).

Discussion

Proposed Mechanism. The cogent evidence for the triplet nature of the reaction of acenaphthylene with cyclopentadiene is documented elsewhere. ${ }^{3 a}$ The arguments cited there are equally applicable to the reactions of the piperylenes with 1, The product ratios obtained in the direct and Rose Bengal sensitized irradiations between $\mathbf{1}$ and $\mathbf{3}$ or $\mathbf{4}$ are similar. Additionally, the unsensitized reactions between 1 and $\mathbf{3}$ or $\mathbf{4}$ are quenched by molecular oxygen. These data sup-

Figure 1, The dependence of ϕ_{I} upon different concentrations of cis-1,3-pentadiene reacting with 0.01 M acenaphthylene in dibromomethane.
port the intervention of excited triplet $\mathbf{1}$ in the mechanism of the reaction. The observations reported here conform to the previously proposed mechanism shown in Chart III, Chart III

$$
\begin{align*}
& \mathrm{A} \xrightarrow{h \nu}{ }^{1} \mathrm{~A} \tag{1}\\
& { }^{1} \mathrm{~A} \xrightarrow{k_{\text {ic }}} \mathrm{A} \tag{2}\\
& { }^{1} \mathrm{~A} \xrightarrow{k_{\text {isc }}}{ }^{3} \mathrm{~A} \tag{3}\\
& { }^{3} \mathrm{~A} \xrightarrow{k_{\mathrm{d}}} \mathrm{~A} \tag{4}\\
& { }^{3} \mathrm{~A}+\mathrm{Q} \xrightarrow{k_{\mathrm{q}}} \mathrm{~A}+{ }^{3} \mathrm{Q} \tag{5}\\
& { }^{3} \mathrm{~A}+\mathrm{D} \xrightarrow{k_{\mathrm{r}}}[\mathrm{I}] \tag{6}\\
& {[\mathrm{I}] \xrightarrow{k_{-\mathrm{r}}} \mathrm{~A}+\mathrm{D}} \tag{7}\\
& {[\mathrm{I}] \xrightarrow{k_{\mathrm{T}}} \text { products }}
\end{align*}
$$

Rate
Ia

$$
k_{\mathrm{ic}}\left[{ }^{1} \mathrm{~A}\right]
$$

$$
k_{\mathrm{isc}}\left[{ }^{1} \mathrm{~A}\right]
$$

$$
k_{\mathrm{d}}\left[{ }^{3} \mathrm{~A}\right]
$$

$$
k_{\mathrm{q}}\left[{ }^{3} \mathrm{~A}\right][\mathrm{Q}]
$$

$$
k_{\mathrm{r}}\left[{ }^{3} \mathrm{~A}\right][\mathrm{D}]
$$

$$
k_{-\mathrm{r}}[\mathrm{I}]
$$

$$
\begin{equation*}
k_{\mathrm{T}}[\mathrm{I}] \tag{8}
\end{equation*}
$$

where A is acenaphthylene, D is diene, Q is quencher, I is intermediate, and $k_{\text {ic }}, k_{\text {isc }}, k_{\mathrm{d}}, k_{\mathrm{q}}, k_{\mathrm{r}}, k_{-\mathrm{r}}$, and k_{T} are respectively the rate constants for internal conversion, intersystem crossing ($\mathrm{S}_{1} \rightarrow \mathrm{~T}_{1}$), radiationless decay ($\mathrm{T}_{1} \rightarrow \mathrm{~S}_{0}$), quenching, intermediate formation, intermediate disproportionation, and the rate constant for product formation from I. We define α as the ratio $k_{\mathrm{T}} /\left(k_{-\mathrm{r}}+k_{\mathrm{T}}\right)$, the fraction of intermediates that go on to product.

The steady-state kinetic treatment of the mechanism yields eq 9 for the quantum yield of product formation, ϕ_{r}. The reciprocal of this equation is expressed as eq 10 when $[\mathrm{Q}]=0$.

$$
\begin{gather*}
\phi_{\mathrm{r}}=\alpha\left(\frac{k_{\mathrm{isc}}}{k_{\mathrm{ic}}+k_{\mathrm{isc}}}\right)\left(\frac{k_{\mathrm{r}}[\mathrm{D}]}{k_{\mathrm{r}}[\mathrm{D}]+k_{\mathrm{q}}[\mathrm{Q}]+k_{d}}\right) \tag{9}\\
\frac{1}{\phi_{\mathrm{r}}}=\frac{1}{\alpha \phi_{\mathrm{isc}}}+\frac{k_{\mathrm{d}}}{\alpha \phi_{\mathrm{isc}} k_{\mathrm{r}}}\left(\frac{1}{[\mathrm{D}]}\right) \tag{10}
\end{gather*}
$$

Concentration Study. Figures 1 and 2 show a leastsquares plot of the data obtained from a study of the variation in quantum yield of product formed with a change in concentration of cis diene according to the mechanism implicit in eq 10 .

In the solvent dibromomethane, a correlation coefficient of $r>0.99$ corroborates the fit of the data, and the slope of the plot is $5.5 \pm 0.1 M^{-1}$ with an intercept of 2.2 ± 0.5. From the reciprocal of the intercept, a value of $\alpha \phi_{\text {isc }}$ of 0.45 is obtained. The slope divided by the intercept produces a value for $k_{\mathrm{d}} / k_{\mathrm{r}}$ of 2.5 . This ratio is similar to the value of 2.2 obtained from a study of the reaction of 1 with cyclo-

Figure 2. The dependence of ϕ_{r} upon different concentrations of cis-1,3-pentadiene reacting with 0.01 M acenaphthylene in acetonitrile.
pentadiene. This suggests that the values of k_{d} and k_{r} in the cis-piperylene reaction are about the same as those obtained in the cyclopentadiene study for the solvent $\mathrm{CH}_{2} \mathrm{Br}_{2}$.

A comparison with the concentration dependence study in the solvent $\mathrm{CH}_{3} \mathrm{CN}$ verifies the occurrence of the heavyatom effect. The maximum quantum yield obtained for $3 M$ cis diene in acetonitrile was only 0.0043 , a greater than $40-$ fold reduction in quantum yield from a similar reaction of 1 with cis diene in the solvent $\mathrm{CH}_{2} \mathrm{Br}_{2}$. The acetonitrile data are subject to greater error because of the extremely small quantum yields. A least-squares treatment of the data obtained in the solvent $\mathrm{CH}_{3} \mathrm{CN}$ yields a slope of 149 ± 30 M^{-1} and an intercept of 167 ± 27. A value of 0.006 for $\alpha \phi_{\text {isc }}$ is derived, and the ratio for $k_{\mathrm{d}} / k_{\mathrm{r}}$ is computed to be 0.9 . The correlation coefficient is 0.96 .

Interpretation of $\alpha \phi_{\text {isc }}$. Assuming, as in our previous study, ${ }^{3 a}$ that $\phi_{\text {isc }}$ is 1 in heavy-atom solvents, we obtain a value of 0.45 for α in the cis-piperylene reaction with 1 . This value is approximately twice the value of 0.2 for α in the cyclopentadiene reaction and suggests that the intermediate derived from 3 more efficiently forms product than the intermediate derived from cyclopentadiene. For acetonitrile, a value of $\phi_{\text {isc }} \leq 0.013$ is computed on the assumption that α remains equal to 0.45 . This value compares favorably, within the experimental uncertainties, with the value for $\phi_{\text {isc }}$ obtained for 1 reacting with cyclopentadiene in acetonitrile. ${ }^{3 a}$ This again emphasizes the extreme inefficiency of intersystem crossing in acenaphthylene in the absence of heavy atom perturbation. The k_{d} / k_{r} ratio for $\mathbf{1}$ reacting with $\mathbf{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ is of similar magnitude to the cyclopentadiene study, and the calculated standard deviations suggest that based on minor differences any interpretation would be equivocal.

Postulated Intermediate. The postulated intermediate in these reactions could be a triplet diradical or a triplet exciplex. A triplet exciplex was proposed to explain the inefficient sensitized dimerization of indene. ${ }^{10}$ However, we have suggested that a triplet biradical is the probable intermediate that occurs when cyclopentadiene reacts with excited triplet $1 .{ }^{3 a}$

In the piperylene reaction for triplet 1 reacting with either cis- or trans-piperylene, a 90% regioselectivity is found for the terminal double bond. This is typical since terminal double bonds are generally more susceptible to attack than internal double bonds. ${ }^{11}$ The reactions to form the major products are also stereoselective in that the cis or trans geometry of the starting diene is maintained in the major products formed from each reactant. The maintenance of the stereochemical integrity of the starting diene in the major products is consistent with the formation of a
diradical intermediate that has allylic stabilization. Thus, diradicals $\mathbf{9 a}, \mathbf{b}$ are expected to form products derived only from trans-piperylene, whereas diradicals $\mathbf{1 0 a , b}$ are expected to form products derived only from cis-piperylene. Our data are thus in accord with literature expectations that suggest that at modest temperatures ailylic units are expected to maintain their stereochemical integrity. ${ }^{12}$

9a

10a

9b

10b

Because explicit knowledge of the behavior of triplet exciplexes is not available, we can only mount circumstantial evidence against their presence in our system. If triplet exciplexes are capable of causing isomerization of cis-piperylene, then we anticipate that some isomerization of cispiperylene would be detected in the reaction of 1 with 3 . However, in the direct irradiation studies no detectable increase in trans diene was found. Thus, the intermediate that reduces the efficiency of the reaction does not concurrently cause observable isomerization of cis-piperylene. ${ }^{13}$

The amount of isomerization of 3 occurring was investigated during the sensitized reactions of 1 with 3 using the crown ether complex of Rose Bengal. A small but experimentally verifiable amount of isomerization of $\mathbf{3}$ to $\mathbf{4}$ was detected. A separate sample of cis-piperylene and the Rose Bengal complex was irradiated in $\mathrm{CH}_{2} \mathrm{Br}_{2}$ and in $\mathrm{CH}_{3} \mathrm{CN}$. In both tubes, detectable isomerization of 3 to 4 occurred in the absence of acenaphthylene. Thus, the dye Rose Bengal ($\left.E_{\mathrm{T}}=44.6 \mathrm{kcal}\right)^{3 a}$ is slowly sensitizing the isomerization of cis-piperylene $\left(E_{\mathrm{T}}=57.3 \mathrm{kcal}\right)^{14}$ by an apparently endothermic process. In the absence of $\mathbf{1}$, the sensitized transpiperylene runs indicated only trace amounts of isomerization to cis-piperylene.

The similarities in the triplet energies of 1 and Rose Bengal ${ }^{3 a}$ lead us to believe that $\mathbf{1}$ should cause cis-piperylene to isomerize if a triplet exciplex between $\mathbf{1}$ and $\mathbf{3}$ occurs. The absence of significant isomerization of 3 to 4 in the direct irradiation studies with 1 present further suggests that the intervention of a triplet diradical intermediate is the en-ergy-wasting step in this system.
The relative proportions of syn and anti isomers in each group of major products are consistent with a diradical intermediate. Both cis- and trans-piperylene give slightly more anti product that syn product. If secondary forces, such as maximum accumulation of orbitals in an exciplex, contribute to its stability, then a near 50:50 product distribution of both syn and anti products does not seem consistent with an exciplex mechanism. ${ }^{10 \mathrm{~b}}$

A comparison of the differing efficiencies of reaction between $\mathbf{1}$ and cyclopentadiene and $\mathbf{1}$ and the piperylenes leads to the conclusion that diradicals are involved as intermediates, but that the activation energy for ring closure is lower for diradicals 9 and 10. A rationalization for this higher efficiency is found in the nature of the products being formed. We assume that the activation energy for ring closure of the diradical is higher in the cyclopentadiene reactions because tricyclic structures are being formed that have more strain energy than the bicyclic products derived from the piperylenes.

The fact that cyclopentadiene is structurally more rigid than the piperylenes might also be an additional factor. The diradicals $\mathbf{9}$ and $\mathbf{1 0}$ might be able to achieve conformations that more readily close to a ring than the conformations available to a diradical composed of $\mathbf{1}$ and $\mathbf{2}$.

Minor Products. The minor products contribute less than 10% to the overall product mixture obtained from 3 or 4. The small yields of minor products were not conducive to an extensive structural analysis. However, we have verified that some $[2+2]$ cycloaddition between $\mathbf{1}$ and $\mathbf{3}$ or $\mathbf{4}$ occurs with the internal double bond of the diene. The products thus formed are isomers of 6-methyl-7-vinyl[$1^{\prime}, 8^{\prime}$]naphthobicyclo[3.2.0] hept-2-ene (6). We ascribe the small yield of isomeric 6 to the lesser reactivity of the internal double. This is probably a reflection of both electronic effects and steric effects in the transition state that leads to these products.

A small yield $(<3.0 \%)$ of the $[4+2]$ cycloadduct 7 was verified in the reaction between 1 and trans-diene 4 , but no detectable 7 was found in the reaction between 1 and 3. This selectivity for a $[4+2]$ cycloaddition between a dienophile and isomers 3 and 4 is well known ${ }^{15}$ for ground-state reactions. It is noteworthy that it occurs in a triplet excitedstate reaction as well.

The stereochemistry of the isolated photoproduct mixture $7 \mathbf{a}, \mathbf{b}$ was compared with that obtained by reacting $\mathbf{1}$ with 4 in a sealed tube at $160^{\circ} .{ }^{16}$ The nmr spectrum of photomixture 7a,b showed the same resonances as the thermal Diels-Alder product, but the proportion of the two expected $[4+2]$ isomers differed. The stereochemistry of the thermal product has never been proved. ${ }^{16}$ If, as is typical in many $[4+2]$ reactions between simple hydrocarbons, the syn isomer predominates. ${ }^{15}$ we then find that by comparison the anti stereochemistry predominates in the photoproduct mixture. This is analogous to the result found in the $[4+2]$ reaction between $\mathbf{1}$ and cyclopentadiene. ${ }^{3 a}$

There is general agreement that the thermal $[4+2]$ reaction is concerted. ${ }^{15}$ Whether or not the photochemical $[4+2]$ component of this reaction is stepwise or concerted remains to be proved.

Conclusion

The evidence from the data reported here is circumstantial but in agreement with the supposition that the products derived from excited triplet 1 reacting with 3 or 4 are produced from an intermediate that is a triplet diradical. Thus, several steps are required before product is formed. The triplet diradical must undergo intersystem crossing to a singlet diradical which can then collapse to product or dissociate to starting materials. The efficiency with which the diradical goes to form product is apparently a function of the activation energy required to close the ring. Conformational rigidity in the starting diene and ring strain in the polycyclic products produced appear to be factors influencing the overall efficiency of the reaction as the transition state is reached. ${ }^{22}$

Experimental Section

Materials. Acenaphthylene was purified as previously described. ${ }^{3 a}$ Cis-1,3-Pentadiene was prepared by treating maleic anhydride with a mixture of piperylene isomers (Aldrich) and distilling the cis-piperylene. ${ }^{17}$ It contained less than 0.05% of the trans isomer by glc measurement. Pure trans-1,3-pentadiene ($99.9+\%$) was purchased from Chem Samp Co., Columbus, Ohio. Benzophenone (Eastman, White Label) was purified by repeated crystallization from ethanol. The crown ether complex of Rose Bengal was available from a previous study. ${ }^{3 a}$ Solvents were routinely dried over Linde 5A molecular sieves and freshly distilled through a $1-\mathrm{m}$ Vigreux fractionating column.

Instrumentation. Glc analyses were performed with a Varian $1200 \mathrm{Hi}-\mathrm{Fl}$ connected to a Sargent SR recorder equipped with Disc integrator. Column A was a $7 \mathrm{ft} \times 0.125 \mathrm{in} .3 \% \mathrm{OV}-17$ on $80-100$ mesh Chromosorb W. Column B was a $4 \mathrm{ft} \times 0.25 \mathrm{in}$. stainless steel column with $33 \% \mathrm{AgNO}_{3}$-ethylene glycol on $80-100$ mesh Chromosorb W. Preparative scale glc separations were performed on a Varian 920 using a $2 \mathrm{ft} \times 0.25 \mathrm{in}$. column of $10 \% \mathrm{OV}$ 17 on $80-100$ mesh Chromosorb W (column C). Infrared spectra of thin films of liquid samples or of KBr pellets of solid samples were obtained on a Perkin-Elmer 337 spectrometer. Ultraviolet measurements were obtained from a Beckmann DU-2 or DB-G recording spectrophotometer. A Varian T-60 nmr spectrometer equipped with frequency decoupler was used to obtain nmr spectra from dilute solutions of solute dissolved in CDCl_{3} or CCl_{4} at 34°. A Finnegan 1015C System/150 computer controlled ensemble with gas chromatograph was used to generate mass spectra at 70 eV ionizing radiation. Melting points were obtained from a FisherJohns apparatus and are uncorrected. Elemental analyses were obtained from Galbraith Laboratories, Knoxville, Tenn.
Irradiation Procedures. Direct irradiations of solutions of 1 were performed with a 450 -W Hanovia lamp housed in a Pyrex immersion well with circulating cold copper nitrate solution (0.7 M) and surrounded by filters of Corning Glass CS-7-60 so that only a narrow band of light between 360 and 390 nm was transmitted. ${ }^{18}$ This combination was placed in the center of Rayonet MGR-500 merry-go-round apparatus contained in a specially designed box sealed to keep out stray light. The actinometer solutions were irradiated in parallel with the reaction mixtures. All runs were carried to low conversions of reactant ($<20 \%$), and concentrations were adjusted so that the molar absorbance of $\mathbf{1}$ was always greater than 3.0 after cessation of the reaction. Degassing procedures and sensitized irradiations were performed as previously described. ${ }^{3 a}$
Analyses. Photolysis mixtures containing products derived from 1 were analyzed on column A at 155°. Internal standards were acenaphthene and 5 -acenaphthaldehyde for unreacted 1 and photoproducts 5,6 , and 7 , respectively. The analytical procedure used is identical with that described in a previous study. $3 ;$:

Actinometry. The benzophenone-sensitized isomerization of trans-stilbene was used as the actinometer ${ }^{19}$ with correction for back isomerization. ${ }^{20}$
Benzil was also used as a sensitizer in the trans-stilbene mixtures to corroborate the fact that benzophenone was absorbing all the available light that would be absorbed by acenaphthylene. ${ }^{3 a}$

The cycloadducts and solvents were shown to have insignificant absorption at the wavelength used for quantum yield determinations.
anti- (8a) and syn - $\left[1^{\prime}, 8^{\prime}\right]$ Naphthobicyclo[3.2.0]hept-2-ene-6-carboxaldehyde ($\mathbf{8 b}$). To a magnetically stirred mixture of 100 ml (1.0 mol) of isomeric 1,3-pentadienes (70% trans, 30% cis) and 230 ml of dibromomethane contained in an Hanovia immersion apparatus with circulating cold copper nitrate solution (0.7 M) and continuously purged with nitrogen was added $10.0 \mathrm{~g}(0.66 \mathrm{~mol})$ of acenaphthylene in $1-\mathrm{g}$ portions while irradiating for 1 hr . When the solution was almost colorless, irradiation was stopped, and rotary evaporation (water aspirator) of the reaction mixture yielded 19 g of a pale yellow oil. Suction filtration of this oil removed about 0.3 g of the trans photodimer of $\mathbf{1}$. Glc of the oil on a $4 \mathrm{ft} \times 0.25 \mathrm{in} .3 \%$ $\mathrm{OV}-1$ column at 160° recorded peaks with the following relative retention times (\% total area): 1.00 (2), 1.07 (2), 1.32 (32), 1.65 (63). 2.04 (1).

In 40 ml of glacial acetic acid was dissolved 1.0 g of the crude photoproduct mixture. The mixture was treated with ozone, reduced with zinc, and worked up according to the procedure of Noller and Adams ${ }^{21}$ to yield 640 mg of yellow oil that by glc at 180° on $3 \% \mathrm{OV}-1$ is two components in a $2: 1$ area ratio with relative retention times of 1.00 and 1.10. The oil was chromatographed on 20 g of silica beginning with ligroin as the eluent and ending with a 20% benzene-ligroin mixture. Early fractions were rich in anti isomer and later fractions were rich in syn isomer.
The anti isomer 8a was crystallized from hexane and then sublimed ($50^{\circ}(0.025 \mathrm{~mm})$) to yield colorless crystals, $\mathrm{mp} 53-55^{\circ}$: $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.8-2.3(\mathrm{~m}, 1 \mathrm{H}), 2.7-3.2(\mathrm{~m}, 2 \mathrm{H}), 3.9-4.5(\mathrm{~m}, 2 \mathrm{H}$, ArCH_{2}), $7.1-7.7(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 9.97 \mathrm{ppm}(\mathrm{d}, 1 \mathrm{H}, \mathrm{CHO}, J=$ $0.8 \mathrm{~Hz})$; ir (KBr) $3020,2930,2780,2690(\mathrm{C}-\mathrm{H}), 1710(\mathrm{C}=\mathrm{O})$, $1600(\mathrm{C}=\mathrm{C}), 1490,1360,821,780 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 86.51 ; \mathrm{H}, 5.81$. Found: C, 86.37; H, 5.81.

The oily syn isomer $\mathbf{8 b}$ was recrystallized from hexane to yield colorless crystals, $\mathrm{mp} 81-83^{\circ}: \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 2.0-3.0(\mathrm{~m}, 2 \mathrm{H}), 3.58$ $(\mathrm{q}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.0-4.8\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH} \mathrm{H}_{2}\right), 7.1-7.7(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{Ar} H$), $9.33 \mathrm{ppm}(\mathrm{d}, 1 \mathrm{H}, \mathrm{CHO}, J=2.4 \mathrm{~Hz}$); ir (KBr) 3020,2930 , 2800, $2710(\mathrm{C}-\mathrm{H}), 1710(\mathrm{C}=\mathrm{O}), 1610,1600(\mathrm{C}=\mathrm{C}), 1490,1430$, 1360, 1182, 1099, $821,781 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}$, 86.51; H, 5.81. Found: C, 86.50; H, 5.82
anti-6-(trans -1-Propenyl) [$1^{\prime}, 8^{\prime}$] naphthobicyclo[3.2.0]hept-2-ene (5a) and Syn-Trans Isomer 5c. A Rayonet RPV-8 Pyrex test tube was charged with 4.5 ml of trans- 1,3-pentadiene and sufficient dibromomethane added to adjust the volume to 15 ml . Acenaphthylene, $22.5 \mathrm{mg}(0.15 \mathrm{mmol})$, was added, and the solution was degassed with nitrogen for 25 min . The solution was then irradiated until the yellow of 1 was discharged (about 12 min). Additional portions of about 22 mg of $\mathbf{1}$ were added to the mixture, and irradiation was continued until a total of 496 mg (3.2 mmol) of 1 was consumed over a period of about 4 hr . Rotary evaporation of the photolysate (water evaporator) afforded 790 mg of a tan oil. Analytical gle analysis of this oil on column A at 180° gave the following relative retention times (\% total area): 1.00 (2.4), 1.08 (1.8), 1.27 (2.6), 1.48 (41), 1.77 (50), 2.30 (2).

Preparative gle of this oil on column C at 155° effected separation of three peaks with relative retention $\left(R_{i}\right)$ of $1.00,1.48$, and 1.77. Peak $R_{1}=1.0$ (assumed to be an isomer of 6) was a colorless solid that after crystallization from hexane and sublimation (40°. 0.025 Torr) had $\mathrm{mp} 47.5-48.5^{\circ}: \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.32(\mathrm{~d}, 3 \mathrm{H}$, meth$y 1, J=6.4 \mathrm{~Hz}), 2.02\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}, J=7 \mathrm{~Hz}\right), 3.00(\mathrm{q}, I \mathrm{H}$, allylic methine, $J=8 \mathrm{~Hz}$), $3.62(\mathrm{t}, 1 \mathrm{H}$, benzylic, $J=6 \mathrm{~Hz}), 4.30$ (AB q, 1 H , benzylic, $J=6,10 \mathrm{~Hz}$), $4.73(\mathrm{~d}, 1 \mathrm{H}$, vinylic, $J=2.8$ Hz), $4.95(\mathrm{AB} \mathrm{q}, 1 \mathrm{H}$, vinylic, $J=2.8,7.6 \mathrm{~Hz}), 5.52(\mathrm{q}, 1 \mathrm{H}$, vinylic, $J=8 \mathrm{~Hz}$), $7.1-7.7 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}$, aromatic); ir (KBr) 3030, $2940(\mathrm{C}-\mathrm{H}), 1610(\mathrm{C}=\mathrm{C}), 1450,1360,908,781 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 220 (3), 153 (13), 152 (100), 151 (9), 39 (8). Anal. Calcd for $\mathrm{C}_{17} 7 \mathrm{H}_{16}$: C, 92.68; H, 7.32. Found: C, 92.73; H, 7.33.

Peak $R_{1}=1.48$, isomer $\mathbf{5} \mathbf{c}$, was isolated as a colorless oil which
 3 H , methyl, $J=4.4 \mathrm{~Hz}$), $1.73(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{q}, 1 \mathrm{H}, J=\sim 10$ Hz), $3.52(\mathrm{p}, 1 \mathrm{H}$, allylic methine, $J=\sim 8 \mathrm{~Hz}), 3.8-4.5(\mathrm{~m}, 2 \mathrm{H}$, benzylic), 4.8-5.6 (m, 2 H , vinylic), $7.0-7.6 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}$, aromatic); ir (neat) 3020, 2920, 2840 (C-H), $1600(\mathrm{C}=\mathrm{C}), 1480,1440$, 1430, 1360, 967 (trans $R C=C R$), $820,779 \mathrm{~cm}^{-1}$; mass spectrum $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ (rel intensity) $220(6), 165(15), 153$ (13), 152 (100), 151 (21). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16}$: C, 92.68 ; H, 7.32. Found: C, 92.55; H, 7.29.

Peak $R_{1}=1.77$, isomer 5 a , was collected as a pale yellow oil: $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.70(\mathrm{~d}, 3 \mathrm{H}$, methyl, $J=5.4 \mathrm{~Hz}), 2.0-2.9(\mathrm{~m}, 3 \mathrm{H})$, 3.8-4.2 (m, 2 H , benzylic), 5.1-6.0 (m, 2 H , vinylic), 7.1-7.6 ppm ($\mathrm{m}, 6 \mathrm{H}$ aromatic); ir (neat) 3020, 2920, $2840(\mathrm{C}-\mathrm{H}$), 1600 $(\mathrm{C}=\mathrm{C}), 1490,1430,1360,966$ (trans $\mathrm{RC}=\mathrm{CR}$), $822,780 \mathrm{~cm}^{-1}$. mass spectrum (70 eV) m/e (rel intensity) 220 (12), 165 (12), 153 (59). 152 (100), 151 (29), 150 (13), 52 (9), 41 (13), 39 (21). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16}: \mathrm{C}, 92.68 ; \mathrm{H}, 7.32$. Found: C, $92.50 ; \mathrm{H}, 7.30$.

7-Methyl-6b,7,10,10a-tetrahydrofluoranthene (7a and 7b), A $2 \times$ 40 cm column of 5% silver nitrate on silica gel (Curtin, 60-200 mesh) was charged with 500 mg of crude photolysate from the trans- piperylene run, and the column was eluted with 275 ml of I : $9(\mathrm{v} / \mathrm{v})$ benzene-hexane followed by 275 ml of $2: 8(\mathrm{v} / \mathrm{v})$ benzenehexane to remove isomers 5 and 6 . Subsequent elution with 200 ml of $1: 1(\mathrm{v} / \mathrm{v})$ benzene-hexane afforded 17 mg of a pale yellow oil. Preparative glc of this oil on column C at 160° separated pure 7 as a colorless solid that after sublimation ($40^{\circ}, 0.025 \mathrm{Torr}$) had mp $66.5-67.5^{\circ}: \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.48(\mathrm{~d}, 3 \mathrm{H}$, methyl, $J=6.8 \mathrm{~Hz}$), 1.9$2.4(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{t}, 1 \mathrm{H}$, benzylic, $J=8 \mathrm{~Hz}$), 3.78 (q, 1 H , benzylic, $J=8 \mathrm{~Hz}$), 5.83 (broad s, 2 H , vinylic), $7.1-7.7 \mathrm{ppm}$ (m, 6 H , aromatic); ir (KBr) 3020, $2920(\mathrm{C}-\mathrm{H}$), 1610 $(\mathrm{C}=\mathrm{C}), 1380,820,779,724,673 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e (rel intensity) 220 (10), 153 (14), 152 (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16}$: C, 92.68; H, 7.32. Found: C, 92.84; H, 7.17. Examination of the nmr spectrum of the $7 \mathbf{a}, \mathbf{b}$ mixture isolated as described above provides an estimate of $30 \% 7 \mathrm{~b}$ and $70 \% 7 \mathrm{a}$ by relative integration of the methyl doublet region.

Thermal Formation of Presumed 7b. A $1 \times 20 \mathrm{~cm}$ Carius tube was charged with 1.0 g of $\mathbf{1}$ (about 6 mmol$), 2.0 \mathrm{ml}(20 \mathrm{mmol})$ of 4, and 10 mg of hydroquinone in 1 ml of THF. The tube was sealed, heated to 160° for 12 hr , and opened at 0°; the solvent was
removed by rotary evaporation to produce 2.1 g of a red oil. Chromatography of this oil on a column composed of 5% silver nitrate on silica gel followed by preparative glc on column C at 160° followed by recrystallization from hexane yielded colorless needles, $\mathrm{mp} 88.5-90.0^{\circ}$ (lit. ${ }^{16} 94-95^{\circ}$): $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.23$ (d, 3 H , methyl, $J=7.2 \mathrm{~Hz}$), $1.47(\mathrm{~d}, 0.20 \mathrm{H}$, methyl doublet of side product, presumed 7a), 2.5-2.8(m,3H), 3.8-4.0(m, 2 H , benzylic), 5.62 (d, 2 H , vinylic), $7.1-7.6 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}$, a romatic); ir (KBr) 3030,2960, $2840(\mathrm{C}-\mathrm{H}), 1610(\mathrm{C}=-\mathrm{C}), 1380,820,779,718,659 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 220 (7), 219 (2), 152 (100), 151 (42). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16}$: C, 92.68: H, 7.32. Found: C, 92.71: H, 7.34.
anti-6-(cis-1-Propenyl) $\left[1^{\prime}, 8^{\prime}\right]$ naphthobicyclo[3,2.0]hept-2-ene
(5b) and Syn-Cis Isomer 5d. The procedure described for the reaction of trans-1,3-pentadiene was used to treat 495 mg (3.2 mmol) of $\mathbf{1}$ with 4.5 ml of $\mathbf{3}$ during an irradiation interval of 276 min . Removal of solvent by rotary evaporation (water aspirator) gave 1.08 g of a tan oil. Analysis of this oil on column A at 160° gave the following relative retention times (\% total a rea): 1.00 (1.1), 1.08 (3.9), 1.28 (2), 1.36 (2), 1.76 (50), 1.91 (43).

A $2 \times 40 \mathrm{~cm}$ column of 5% silver nitrate on silica gel was charged with the oil and eluted with 250 ml of $1: 9(\mathrm{v} / \mathrm{v})$ benzenehexane (fraction 1). The eluent was changed to a $2: 8$ (v / v) ben-zene-hexane mixture, and 100 ml was collected. The next 200 ml was collected and combined with a subsequent $100-\mathrm{ml}$ volume obtained by eluting the column with $1: 1(\mathrm{v} / \mathrm{v})$ benzene-hexane (fraction II). Rotary evaporation of fraction 1 yielded 252 mg of a colorless oil. Preparative glc of this oil on column C at 160° achieved separation of a minor component, $K_{\mathrm{t}}=1.08$, as a colorless oil that slowly crystallized on standing, mp 51.5-53.0 ${ }^{\circ}$; ir (neat) 3040 , 2985, 2960, 2940, 2860, 992, 913, 826, 795, $774 \mathrm{~cm}^{-1}$; mass spectrum (70 cV) m/e (rel intensity) 220 (9), 165 (8), 153 (8), 152 (100), 151 (18), 39 (12). The small sample yield precluded any further identification of the structure.

The major component isolated from fraction 1 by $\mathrm{glc}, R_{1}=1.76$, isomer 5b, was obtained as a pale yellow oil: $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.55$ (d, 3 H, methyl, $J=6.2 \mathrm{~Hz}), 2.0-2.8(\mathrm{~m}, 2 \mathrm{H}), 3.1(\mathrm{~m}, 1 \mathrm{H}$, allylic methine), $3.8-4.3$ ($\mathrm{m}, 2 \mathrm{H}$, benzylic), $5.2-6.0$ ($\mathrm{m}, 2 \mathrm{H}$, vinylic), $7.1-7.7 \mathrm{ppm}$ (m, 6 H , aromatic); ir (neat) $3030,3000,2920,2840$ $(\mathrm{C}-\mathrm{H}), 1600(\mathrm{C}=\mathrm{C}), 1490,1440,1360,822,780 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 220 (1), 154 (10), 152 (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16}$: C, $92.68 ; \mathrm{H}, 7.32$. Found: 'C, $92.58 ; \mathrm{H}$, 7.27 .

Rotary evaporation of fraction II gave 161 mg of a yellow semisolid that was dissolved in warm hexane. Colorless prisms of component $R_{1}=1.91$, isomer $\mathbf{5 d}$, separated upon refrigeration. These were recrystallized from hexane to yield 20 mg of $\mathbf{5 d}, \mathrm{mp} 87.0-$ $89.0^{\circ}: \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.65$ (d plus underlying peaks, 4 H , methyl, J $=5.0 \mathrm{~Hz}$, plus one proton from cyclobutane ring), 2.93 (q of unequal couplings, I H), $3 \cdot 6-4.5(\mathrm{~m}, 3 \mathrm{H}$, benzylic and allylic methines), $5.18(\mathrm{~m}, 2 \mathrm{H}$, vinylic), and $7.1-7.7 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}$, aromatic); ir (KBr) 3010, 2950, 2910, $2830(\mathrm{C}-\mathrm{H}), 1590(\mathrm{C}=\mathrm{C}), 1480$. 1430, $1360,821,781 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e (rel intensity) 220 (2), 165 (8), 153 (11), 152 (100), 151 (10), 39 (10). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16}: \mathrm{C}, 92.68 ; \mathrm{H}, 7.32$. Fonnd: C, $92.46 ; \mathrm{H}$, 7.25.

The mother liquor from the recrystallization of compounds isolated in fraction II was subjected to preparative glc on column C at 160° to give component $R_{\mathrm{i}}=1.00$ (presumed isomer 6) as a colorless oil that crystallized on standing, mp 49.5-51.0 ${ }^{\circ}$: ir (neat) $3050,2975,2950,2920,2890,2865,1605,1450,1365,990,900$, $824,774 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 220 (3), 152 (100), 151 (12), 150 (8), 39 (12). The small isolated yield precluded further structure determination.
Rose Bengal Sensitized Irradiations of the Isomeric 1,3-Pentadienes, In a typical run a $12 \times 75 \mathrm{~mm}$ Pyrex test tube was charged with 0.65 ml (6.6 mmol) of diene and 1.50 ml of 0.455 mM disodium bis(cyclohexyl-18-crown-6 ether)-Bengal Red complex ${ }^{3:}$ in dibromomethane. The tube was sealed with a rubber septum, and the solution was degassed with nitrogen for 10 min . The solution was irradiated with a sodium vapor lamp for 160 min and then analyzed on column B in series with column A at 30°. The results obtained are shown in Table III.
Ozonolysis of Components Isolated by Chromatography of the Photoproduct Mixture. Each component isolated from the crude

Table III

Compd	Solvent	\% isomer before irradiation	Yisomer after irradiation
$\mathbf{3}$	$\mathrm{CH}_{2} \mathrm{Br}_{2}$	0.05 (trans)	0.64 (trans)
$\mathbf{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	0.05 (trans)	0.72 (trams)
$\mathbf{4}$	$\mathrm{CH}_{3} \mathrm{CN}$	0.00 (cis)	0.21 (cis)

photoproduct mixture was dissolved in 4.0 ml of ethyl acetate (purified by passage over alumina) in a $10-\mathrm{ml}$ round-bottom flask cooled in ice-water, and a slow stream of ozone mixed with air was bubbled through the solution for 80 sec . Subsequenily, 9.5 mg of platinum oxide was added, and the flask was flushed with hydrogen and magnetically stirred under I atm of hydrogen for 30 min . After evaporation of solvent, the residual aldehyde was analyzed by ir, nmr, and gle to confirm its structure and thereby confirming the syn or anti stereochemistry of the original allylic moiety.

Acknowledgment. We thank the Robert A. Welch Foundation for partial support of this study. We thank Mrs. S. T. Weintraub for obtaining the mass spectral data and the National Science Foundation for a matching fund grant to purchase the nmr spectrometer.

References and Notes

(1) Robert A. Welch Postdoctoral fellow.
(2) (a) D. O. Cowan and R. L. Drisko, Tetrahedron Lett., 1255 (1967); (b) J. Amer. Chem. Soc., 89, 3068 (1967); (c) ibid., 92, 6281 (1970).
(3) (a) W. I. Ferree, Jr., and B. F. Plummer, J. Amer. Chem. Soc., 95, 6709 (1973); (b) J. Chem. Soc.. Chem. Commun., 306 (1972): (c) B. F. Plummer and D. M. Chihal, J. Amer. Chem. Soc., 93, 2071 (1971); 94, 6248 (1972); (d) B. F. Plummer and R. A. Hall, Chem. Commun., 44 (1970).
(4) (a) J. Meinwald, G. E. Samuelson, and M. Ikeda, J. Amer. Chem. Soc.. 92, 7604 (1970); (b) J. E. Shields, D. Gavrilovic, and J. Kopecky, Tetrahedron Lett., 271 (1971): J. Org. Chem., 39, 515 (1974); (c) W. Hartmann and H. G. Heine, Angew. Chem., Int. Ed. Engl., 10, 273 (1971).
(5) (a) J. W. Emsley, J. Feeney, and L. H. Sutcliffe, ''High Resolution Nuclear Magnetic Resonance Spectroscopy." Vol. 1. Pergamon Press, New York. N.Y., 1965, pp 81-90; (b) R. Baker and T. J. Mason, J. Chem. Soc. C 596 (1970): (c) G. O. Schenck, I. Hartmann, and W. Metzner, Tetrahedron Lett., 347 (1965).
(6) M. Karplus, J. Chem. Phys., 30, 11 (1959).
(7) N. B. Colthup, T. H. Daly, and S. E. Wiberly, "Introduction to infrared and Raman Spectroscopy," Academic Press, New York. N.Y., 1964. pp 210-216.
(8) L. M. Jackman and S. Sternhell, "Applicatioris of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, New York, N. Y., 1969, pp 301-303.
(9) Detailed computer simulations of the nmr spectra of these molecules currently are being studied and will be the subiect of a future report.
(10) (a) C. DeBoer, J. Amer. Chem. Soc., 91, 1855 (1969). (b) Note Added in Proof: see R. A. Caldwell and L. Smith. ibid., 96, 2994 (1974), for new information about exciplexes.
(11) For example, the triplet sensitized dimerization of the piperylenes produces a 92% yield of the $[2+2]$ dimers resulting from tail-to-tail combination of the dienes: J. Saltiel, D. E. Townsend, and A. Sykes, J. Amer. Chem. Soc., 95, 5968 (1973).
(12) (a) C. Walling and W. Thaler, J. Amer. Chem. Soc., 83, 3877 (1961); (b) P. D. Bartlett, Science, 159, 833 (1968). (c) At high temperature, however, stereochemistry is lost; see R. J. Crawford, J. Hamelin, and B. Strehlke, J. Amer. Chem. Soc., 93, 3810 (1971).
(13) The possibility exists that as 3 isomerizes to $4 ; 4$ then reacts with 1 in the solvent cage to keep the apparent concentration of 4 relatively unchanged. If, however, 4 diffused into the reaction mixture, it would then be present in a minimum of 1000 -fold excess of 3 , and 4 would have to have a much larger bimolecular rate constant than 3, a fact that is not experimentally justified.
(14) R. E. Kellog and W. T. Simpson. J. Amer. Chem. Soc., 87, 4230 (1965).
(15) A: Wasserman, "The Diels-Alder Reaction," Elsevier, Amsterdam. 1965.
(16) M. C. Kloetzel and H. E. Mertel, J. Amer. Chem. Soc., 72, 4786 (1950).
(17) R. L. Frank, R. D. Emmick, and R. S. Johnson, J. Amer. Chem. Soc. 69, 2313 (1947).
(18) This apparatus is a modification of a suggested design: (a) F. G. Moses. R. S. H. Liu, and B. M. Monroe, Mol. Photochem., 1, 245 (1969); (b) B. F. Plummer, ibid., 6, 245 (1974).
(19) G. S. Hammond, J. Saltiel, A. A. Lamola, N. J. Turro, J. S. Bradshaw, D O. Cowan, R. C. Counsell, V. Vogt, and C. Dalton, J. Amer. Chem. Soc., 86. 3197 (1964).
(20) A. A. Lamola and G. S. Hammond. J. Chem. Phys., 43, 2129 (1965).
(21) C. R. Noller and R. Adams, J. Amer. Chem. Soc., 48, 1074 (1926).
(22) Note added in Proof. Further verification of the proposed heavy-atom effect mechanism in this study is found in the following paper: D. O . Cowan and J. C. Koziar, J. Amer. Chem. Soc., 96, 1229 (1974).

